HTTPS的SSL,TSL

有人问:http和https有什么区别?

HTTPS和HTTP的区别
一、https协议需要到ca申请证书,一般免费证书很少,需要交费。
二、http是超文本传输协议,信息是明文传输,https 则是具有安全性ssl加密传输协议。
三、http和https使用的是完全不同的连接方式,用的端口也不一样,前者是80,后者是443。
四、http的连接很简单,是无状态的;HTTPS协议是由SSL+HTTP协议构建的可进行加密传输、身份认证的网络协议,比http协议安全。

解决问题编辑

信任主机的问题
采用https的服务器必须从CA (Certificate Authority)申请一个用于证明服务器用途类型的证书。该证书只有用于对应的服务器的时候,客户端才信任此主机。所以所有的银行系统网站,关键部分应用都是https 的。客户通过信任该证书,从而信任了该主机。其实这样做效率很低,但是银行更侧重安全。这一点对局域网对内提供服务处的服务器没有任何意义。局域网中的服务器,采用的证书不管是自己发布的还是从公众的地方发布的,其客户端都是自己人,所以该局域网中的客户端也就肯定信任该服务器。
通讯过程中的数据的泄密和被篡改
1. 一般意义上的https,就是服务器有一个证书。
a) 主要目的是保证服务器就是他声称的服务器,这个跟第一点一样。
b)服务端客户端之间的所有通讯,都是加密的。
i. 具体讲,是客户端产生一个对称的密钥,通过服务器的证书来交换密钥,即一般意义上的握手过程。
ii. 接下来所有的信息往来就都是加密的。第三方即使截获,也没有任何意义,因为他没有密钥,当然篡改也就没有什么意义了。
2. 少许对客户端有要求的情况下,会要求客户端也必须有一个证书。
a) 这里客户端证书,其实就类似表示个人信息的时候,除了用户名/密码,还有一个CA 认证过的身份。因为个人证书一般来说是别人无法模拟的,所有这样能够更深的确认自己的身份。
b) 目前大多数个人银行的专业版是这种做法,具体证书可能是拿U盘(即U盾)作为一个备份的载体。

4限制编辑

它的安全保护依赖浏览器的正确实现以及服务器软件、实际加密算法的支持。
一种常见的误解是“银行用户在线使用https:就能充分彻底保障他们的银行卡号不被偷窃。”实际上,与服务器的加密连接中能保护银行卡号的部分,只有用户到服务器之间的连接及服务器自身。并不能绝对确保服务器自己是安全的,这点甚至已被攻击者利用,常见例子是模仿银行域名的钓鱼攻击。少数罕见攻击在网站传输客户数据时发生,攻击者会尝试窃听传输中的数据。
商业网站被人们期望迅速尽早引入新的特殊处理程序到金融网关,仅保留传输码(transaction number)。不过他们常常存储银行卡号在同一个数据库里。那些数据库和服务器少数情况有可能被未授权用户攻击和损害。[1] 
TLS 1.1之前,这段仅针对TLS 1.1之前的状况。因为SSL位于http的下一层,并不能理解更高层协议,通常SSL服务器仅能颁证给特定的IP/端口组合。这使指它经常不能在虚拟主机(基于域名)上与HTTP正常组合成HTTPS。
这一点已被即将来临的TLS 1.1更新为—种完全支持基于域名的虚拟主机

5ssl简介编辑

SSL(Secure Sockets Layer 安全套接层),及其继任者传输层安全(Transport Layer Security,TLS)是为网络通信提供安全及数据完整性的一种安全协议。TLS与SSL在传输层对网络连接进行加密。
SSL (Secure Socket Layer)为Netscape所研发,用以保障在Internet上数据传输之安全,利用数据加密(Encryption)技术,可确保数据在网络上之传输过程中不会被截取及窃听。目前一般通用之规格为40 bit之安全标准,美国则已推出128 bit之更高安全标准,但限制出境。只要3.0版本以上之I.E.或Netscape浏览器即可支持SSL。
当前版本为3.0。它已被广泛地用于Web浏览器与服务器之间的身份认证和加密数据传输。
SSL协议位于TCP/IP协议与各种应用层协议之间,为数据通讯提供安全支持。SSL协议可分为两层:SSL记录协议(SSL Record Protocol):它建立在可靠的传输协议(如TCP)之上,为高层协议提供数据封装、压缩、加密等基本功能的支持。SSL握手协议(SSL Handshake Protocol):它建立在SSL记录协议之上,用于在实际的数据传输开始前,通讯双方进行身份认证、协商加密算法、交换加密密钥等。
SSL协议提供的服务主要有哪些
1)认证用户和服务器,确保数据发送到正确的客户机和服务器
2)加密数据以防止数据中途被窃取
3)维护数据的完整性,确保数据在传输过程中不被改变。
SSL协议的工作流程
服务器认证阶段:1)客户端向服务器发送一个开始信息“Hello”以便开始一个新的会话连接;2)服务器根据客户的信息确定是否需要生成新的主密钥,如需要则服务器在响应客户的“Hello”信息时将包含生成主密钥所需的信息;3)客户根据收到的服务器响应信息,产生一个主密钥,并用服务器的公开密钥加密后传给服务器;4)服务器恢复该主密钥,并返回给客户一个用主密钥认证的信息,以此让客户认证服务器。
用户认证阶段
在此之前,服务器已经通过了客户认证,这一阶段主要完成对客户的认证。经认证的服务器发送一个提问给客户,客户则返回(数字)签名后的提问和其公开密钥,从而向服务器提供认证。
从SSL 协议所提供的服务及其工作流程可以看出,SSL协议运行的基础是商家对消费者信息保密的承诺,这就有利于商家而不利于消费者。在电子商务初级阶段,由于运作电子商务的企业大多是信誉较高的大公司,因此这问题还没有充分暴露出来。但随着电子商务的发展,各中小型公司也参与进来,这样在电子支付过程中的单一认证问题就越来越突出。虽然在SSL3.0中通过数字签名数字证书可实现浏览器和Web服务器双方的身份验证,但是SSL协议仍存在一些问题,比如,只能提供交易中客户与服务器间的双方认证,在涉及多方的电子交易中,SSL协议并不能协调各方间的安全传输和信任关系。在这种情况下,Visa和MasterCard两大信用卡公组织制定了SET协议,为网上信用卡支付提供了全球性的标准。[3] 

6握手过程编辑

为了便于更好的认识和理解SSL 协议,这里着重介绍SSL 协议的握手协议。SSL 协议既用到了公钥加密技术又用到了对称加密技术,对称加密技术虽然比公钥加密技术的速度快,可是公钥加密技术提供了更好的身份认证技术。SSL 的握手协议非常有效的让客户和服务器之间完成相互之间的身份认证,其主要过程如下:
①客户端的浏览器向服务器传送客户端SSL 协议的版本号,加密算法的种类,产生的随机数,以及其他服务器和客户端之间通讯所需要的各种信息。
②服务器向客户端传送SSL 协议的版本号,加密算法的种类,随机数以及其他相关信息,同时服务器还将向客户端传送自己的证书。
③客户利用服务器传过来的信息验证服务器的合法性,服务器的合法性包括:证书是否过期,发行服务器证书的CA 是否可靠,发行者证书的公钥能否正确解开服务器证书的“发行者的数字签名”,服务器证书上的域名是否和服务器的实际域名相匹配。如果合法性验证没有通过,通讯将断开;如果合法性验证通过,将继续进行第四步。
④用户端随机产生一个用于后面通讯的“对称密码”,然后用服务器的公钥(服务器的公钥从步骤②中的服务器的证书中获得)对其加密,然后将加密后的“预主密码”传给服务器。
⑤如果服务器要求客户的身份认证(在握手过程中为可选),用户可以建立一个随机数然后对其进行数据签名,将这个含有签名的随机数和客户自己的证书以及加密过的“预主密码”一起传给服务器。
⑥如果服务器要求客户的身份认证,服务器必须检验客户证书和签名随机数的合法性,具体的合法性验证过程包括:客户的证书使用日期是否有效,为客户提供证书的CA 是否可靠,发行CA 的公钥能否正确解开客户证书的发行CA 的数字签名,检查客户的证书是否在证书废止列表(CRL)中。检验如果没有通过,通讯立刻中断;如果验证通过,服务器将用自己的私钥解开加密的“预主密码”,然后执行一系列步骤来产生主通讯密码(客户端也将通过同样的方法产生相同的主通讯密码)。
⑦服务器和客户端用相同的主密码即“通话密码”,一个对称密钥用于SSL 协议的安全数据通讯的加解密通讯。同时在SSL 通讯过程中还要完成数据通讯的完整性,防止数据通讯中的任何变化。
客户端服务器端发出信息,指明后面的数据通讯将使用的步骤⑦中的主密码为对称密钥,同时通知服务器客户端的握手过程结束。
⑨服务器向客户端发出信息,指明后面的数据通讯将使用的步骤⑦中的主密码为对称密钥,同时通知客户端服务器端的握手过程结束。
⑩SSL 的握手部分结束,SSL 安全通道的数据通讯开始,客户和服务器开始使用相同的对称密钥进行数据通讯,同时进行通讯完整性的检验。

HTTP,全称”Hyper Text Transfer Protocol”,是从浏览器访问网站时使用的默认协议.由于浏览器到网站之间的数据传送是明文方式,容易受到中间人攻击和窃听,不适合如银行账号,口令等敏感信息的传送. 如新浪http://www.sina.com.cn.

HTTPS,代表Hyper Text Transfer Protocol Secure,将SSL/TLS加密和认证功能融入到HTTP协议里面,在信息传送前先通过SSL/TLS协议加密,收到的信息会先被浏览器解密,再显示出,从而保证了网上交易时的安全. HTTPS广泛用在网上交易\支付\敏感信息下载(如电子邮件)等领域. 如招行网上银行

 

如何启用HTTPS

为了准备让Web服务器接受HTTPS连接,管理员必须创建一个Web服务器的SSL证书。 此证书必须由一对浏览器信任的证书颁发机构接受,如VeriSign, GlobalSign, Geotrust, Thawte, Comodo等。 浏览器在发布时就已经内置了主要认证机构签名证书 ,使他们能够验证他们签名的证书。

 

获取证书

是向SSL代理商购买受信的国际SSL证书.用户不需要安装插件,直接就可以安全访问.

也有不受信的CA机构或个人签发自签名证书, 但是用户需要手工添加的不被浏览器内置的签名证书到受信任根证书列表中。

 

TLS与SSL协议

Transport Layer Socket和Secure Socket Layer本质上是一样的,是集加密和身份认证于一身的安全协议,为浏览器,IIS,Apache,Exchange Server等所有应用默认支持.

TLS是在SSL(由最早的浏览器厂商Netscape公司推出)基础上,发展成国际标准组织IETF的标准RFC5246。

TLS协议允许客户机/服务器应用程序通过网络进行通信的目的是防止窃听、干扰和伪造的信息。

TLS使用加密和数字签名技术提供在互联网上端点认证和通信的保密性。加密强度可以达到1024或2048位。

在典型的end-user/browser使用,TLS身份验证是单方面的:只有服务器进行身份验证 (客户端知道服务器的身份),而不是相反 (客户端仍然未经验证或匿名)。严格地说, 服务器认证对于浏览器(工具)和最终用户(个人)意义并不完全相同。对于浏览器,它只是意味着浏览器验证服务器的证书,即检查了服务器证书的颁发机构是受信的,有完整的信任链。一旦通过验证,浏览器就显示安全图标(如状态栏上的“小锁”)。但是,仅仅是验证不“确定”服务器到最终用户。

 

对于最终用户,最好要执行下列操作之一:检查证书机构的根信息,及证书的CA信任链)。

特别是:在“小锁”图标,并不表示所访问的网站是可信的,只是浏览器到网站的信息进行了加密,避免误解。恶意网站不能使用另一个网站的有效证书,因为他们网址URL和SSL证书是一一对应的。由于只有受信任的CA可以嵌入证书中的网址,是为了确保检查与证书中指定的URL明显的网址是识别真正的网站上的有效方式。

TLS的还支持更安全的双向身份认证模式(通常是在企业应用中),即客户端(通常是浏览器)不仅验证安全网站,安全网站也会验证客户端的身份(需要安装客户端或个人证书)。双向验证要求的客户端也持有证书。

TLS/SSL协议建立涉及三个基本阶段:

1. Peer negotiation for algorithm supporthttp://en.wikipedia.org/wiki/Transport_Layer_Security对等协商
2. Key exchange and authentication 密钥交换和认证
3. Symmetric cipher encryption and message authentication 对称密码加密和消息认证HTT

 


 

联网的通信安全,建立在SSL/TLS协议之上。

本文简要介绍SSL/TLS协议的运行机制。文章的重点是设计思想和运行过程,不涉及具体的实现细节。如果想了解这方面的内容,请参阅RFC文档

一、作用

不使用SSL/TLS的HTTP通信,就是不加密的通信。所有信息明文传播,带来了三大风险。

(1) 窃听风险(eavesdropping):第三方可以获知通信内容。

(2) 篡改风险(tampering):第三方可以修改通信内容。

(3) 冒充风险(pretending):第三方可以冒充他人身份参与通信。

SSL/TLS协议是为了解决这三大风险而设计的,希望达到:

(1) 所有信息都是加密传播,第三方无法窃听。

(2) 具有校验机制,一旦被篡改,通信双方会立刻发现。

(3) 配备身份证书,防止身份被冒充。

互联网是开放环境,通信双方都是未知身份,这为协议的设计带来了很大的难度。而且,协议还必须能够经受所有匪夷所思的攻击,这使得SSL/TLS协议变得异常复杂。

二、历史

互联网加密通信协议的历史,几乎与互联网一样长。

1994年,NetScape公司设计了SSL协议(Secure Sockets Layer)的1.0版,但是未发布。

1995年,NetScape公司发布SSL 2.0版,很快发现有严重漏洞。

1996年,SSL 3.0版问世,得到大规模应用。

1999年,互联网标准化组织ISOC接替NetScape公司,发布了SSL的升级版TLS 1.0版。

2006年和2008年,TLS进行了两次升级,分别为TLS 1.1版和TLS 1.2版。最新的变动是2011年TLS 1.2的修订版

目前,应用最广泛的是TLS 1.0,接下来是SSL 3.0。但是,主流浏览器都已经实现了TLS 1.2的支持。

TLS 1.0通常被标示为SSL 3.1,TLS 1.1为SSL 3.2,TLS 1.2为SSL 3.3。

三、基本的运行过程

SSL/TLS协议的基本思路是采用公钥加密法,也就是说,客户端先向服务器端索要公钥,然后用公钥加密信息,服务器收到密文后,用自己的私钥解密。

但是,这里有两个问题。

(1)如何保证公钥不被篡改?

解决方法:将公钥放在数字证书中。只要证书是可信的,公钥就是可信的。

(2)公钥加密计算量太大,如何减少耗用的时间?

解决方法:每一次对话(session),客户端和服务器端都生成一个”对话密钥”(session key),用它来加密信息。由于”对话密钥”是对称加密,所以运算速度非常快,而服务器公钥只用于加密”对话密钥”本身,这样就减少了加密运算的消耗时间。

因此,SSL/TLS协议的基本过程是这样的:

(1) 客户端向服务器端索要并验证公钥。

(2) 双方协商生成”对话密钥”。

(3) 双方采用”对话密钥”进行加密通信。

上面过程的前两步,又称为”握手阶段”(handshake)。

四、握手阶段的详细过程

“握手阶段”涉及四次通信,我们一个个来看。需要注意的是,”握手阶段”的所有通信都是明文的。

4.1 客户端发出请求(ClientHello)

首先,客户端(通常是浏览器)先向服务器发出加密通信的请求,这被叫做ClientHello请求。

在这一步,客户端主要向服务器提供以下信息。

(1) 支持的协议版本,比如TLS 1.0版。

(2) 一个客户端生成的随机数,稍后用于生成”对话密钥”。

(3) 支持的加密方法,比如RSA公钥加密。

(4) 支持的压缩方法。

这里需要注意的是,客户端发送的信息之中不包括服务器的域名。也就是说,理论上服务器只能包含一个网站,否则会分不清应该向客户端提供哪一个网站的数字证书。这就是为什么通常一台服务器只能有一张数字证书的原因。

对于虚拟主机的用户来说,这当然很不方便。2006年,TLS协议加入了一个Server Name Indication扩展,允许客户端向服务器提供它所请求的域名。

4.2 服务器回应(SeverHello)

服务器收到客户端请求后,向客户端发出回应,这叫做SeverHello。服务器的回应包含以下内容。

(1) 确认使用的加密通信协议版本,比如TLS 1.0版本。如果浏览器与服务器支持的版本不一致,服务器关闭加密通信。

(2) 一个服务器生成的随机数,稍后用于生成”对话密钥”。

(3) 确认使用的加密方法,比如RSA公钥加密。

(4) 服务器证书。

除了上面这些信息,如果服务器需要确认客户端的身份,就会再包含一项请求,要求客户端提供”客户端证书”。比如,金融机构往往只允许认证客户连入自己的网络,就会向正式客户提供USB密钥,里面就包含了一张客户端证书。

4.3 客户端回应

客户端收到服务器回应以后,首先验证服务器证书。如果证书不是可信机构颁布、或者证书中的域名与实际域名不一致、或者证书已经过期,就会向访问者显示一个警告,由其选择是否还要继续通信。

如果证书没有问题,客户端就会从证书中取出服务器的公钥。然后,向服务器发送下面三项信息。

(1) 一个随机数。该随机数用服务器公钥加密,防止被窃听。

(2) 编码改变通知,表示随后的信息都将用双方商定的加密方法和密钥发送。

(3) 客户端握手结束通知,表示客户端的握手阶段已经结束。这一项同时也是前面发送的所有内容的hash值,用来供服务器校验。

上面第一项的随机数,是整个握手阶段出现的第三个随机数,又称”pre-master key”。有了它以后,客户端和服务器就同时有了三个随机数,接着双方就用事先商定的加密方法,各自生成本次会话所用的同一把”会话密钥”。

至于为什么一定要用三个随机数,来生成”会话密钥”,dog250解释得很好:

“不管是客户端还是服务器,都需要随机数,这样生成的密钥才不会每次都一样。由于SSL协议中证书是静态的,因此十分有必要引入一种随机因素来保证协商出来的密钥的随机性。

对于RSA密钥交换算法来说,pre-master-key本身就是一个随机数,再加上hello消息中的随机,三个随机数通过一个密钥导出器最终导出一个对称密钥。

pre master的存在在于SSL协议不信任每个主机都能产生完全随机的随机数,如果随机数不随机,那么pre master secret就有可能被猜出来,那么仅适用pre master secret作为密钥就不合适了,因此必须引入新的随机因素,那么客户端和服务器加上pre master secret三个随机数一同生成的密钥就不容易被猜出了,一个伪随机可能完全不随机,可是是三个伪随机就十分接近随机了,每增加一个自由度,随机性增加的可不是一。”

此外,如果前一步,服务器要求客户端证书,客户端会在这一步发送证书及相关信息。

4.4 服务器的最后回应

服务器收到客户端的第三个随机数pre-master key之后,计算生成本次会话所用的”会话密钥”。然后,向客户端最后发送下面信息。

(1)编码改变通知,表示随后的信息都将用双方商定的加密方法和密钥发送。

(2)服务器握手结束通知,表示服务器的握手阶段已经结束。这一项同时也是前面发送的所有内容的hash值,用来供客户端校验。

至此,整个握手阶段全部结束。接下来,客户端与服务器进入加密通信,就完全是使用普通的HTTP协议,只不过用”会话密钥”加密内容。

五、参考链接

 

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s